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1. Introduction. Orthogonal polynomials and their relationship to numierical 
integration formulas in one variable are well known (see [7], for example), but only 
a few [1], [8]-[10] have attempted to extend these results to orthogonal polynomials 
in several variables and multiple integrals. 

This paper will look at properties and methods for calculating orthogonal 
polynomials in several variables, also showing the relationship of orthogonal poly- 
nomials to evaluate multiple integrals. In order to discuss polynomials in several 
variables it will be necessary to give a linear ordering for the monomials of a poly- 
nomial. Several orderings are possible, the following having been stated by M. 
Weisfeld [12]. 

Let J be the set of n-tuples of nonnegative integers and let 1D be the corre- 
sponding set of monomials, that is j = (l, i2 . . I jn) E J and j = 
Xiil X2 x. . .Xnin E 4(D Define (-k(j) = =k ji and order J as follows: if 
i, j E J, then i < j iff Sk(i) = 0k(j), K = 1, 2, *, r - l and c-r(i) < -r.(j) for 
some r, 1 < ? < n. This ordering on J induces a linear ordering on 4). 

For example, if we have two variables xi and X2, the ordering would be 1, 
X X17 X2 1 X lX27 X221 t7137 X12X'21 XlX227 X231 . Xgln, Xln-1:, X2, Xl-2 .,2 -n. 

We may now express a polynomial in n-variables as 

m 
P(X) = E Ai (X) where o-(i) = o-i(i) 

a( i)==C 

Definition. A polynomial in n-variables is of degree m if the coefficient A # 0 
for some n-tuple i such that o-(i) = m. Note that a polynomial of degree m in n- 
variables has at most Cm+n,n monomials. 

In order to definie orthogonal polynomials one must first make the following 
definitions. 

Definition. Given a domain D C En with positive outer measure and a weight 
function, W(X) of constant sign on D, then for functions f(X) and g(X) such that 
W(X)f(X)g(X) is integrable over D, we can define the scalar product operator as 

(f, g) = f... JW(X)f(X)g(X)dX. 
D 

It will be assumed that the domain D and the weight function W(X) are chosen 
so that the scalar product operator is defined for polynomials. 

Definition. Two functions f(X) and g(X) are orthogonal if (f, g) = 0. 
Definition. An orthogonal polynomial is a polynomial that is orthogonal to all 

polynomials of lower degree. 
In the one-variable case an orthogonal polynomial of degree m was unique up 
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to a multiplicative constant. In more than one variable there are many linearly 
independent orthogonal polynomials of degree m. The next theorem gives a basis 
set for the orthogonal polynomials of degree m. 

THEOREM 1. Let $m be the set of all orthogonal polynomials of degree m, then $m 
has dimension Cn+m?ni,-i and has a basis of the form 

nm-1 
Bm = {bj:bj = 4j (X) + x A j,j i(X),o(j) = m 

a(i)=O 

Proof. First it will be necessary to show that a subset Bm of '3m exists of the 
form described in the theorem. Since each element bj of Bm should be an orthogonal 
polynomial, they must satisfy the Crni equations 

m-1 
(bj, cPj) = (qj, 4)i) + , A j, 1 (4 )) = 0 where o(i) = 0, 1, *, m -1 . 

a( 1)=0 

A solution will exist provided the Gram determinant |() , 4)) ... (4 i, k)k) , 

i = 1, * , K # 0 where k = Cmn-,+n,. According to Davis [3] the Gram deter- 
minant is not zero if 4i, **k, 4k are linearly independent. Since 41, 42, k * )k are 
the linearly independent monomials, we have that a subset Bmn, as described in the 
theorem, of $m exists. 

Let us now show that Bn is a generating set of $m. Let Pm(X) C $m then 
m_1 

Pm(X) = E Ci4)i(X) + E Cj(j(X). 
a(i)=0 or(j)=M 

If Qmri(X) = Pm(X) - Ea(j)=m Cjbj, then Qm-i(X) is a polynomial of degree at 
most m - 1. Therefore we have that 

(Qmn-i Qm-_) = (Pm) Qm-_) - E Cj(bj, Qm_l) = 0. 
a(U)=m 

Then Qm-i = 0 and Pm(X) = fj:a=k Cjbj. Therefore Bm generates all the ele- 
ments for $ 

One can also see that if one omits any element, bj, from the set Bm, the re- 
nmaining set is not a generating set since one could not generate bj from the re- 
maining elements at Bm. Therefore Bm is a basis set. 

The order at Bm is Cn+m_in-i and this is therefore also the dimension of the 
space 4m.3n 

2. Generation. There are several distinct methods for generating a basis set for 
orthogonal polynomials in several variables. These methods follow closely similar 
methods for generating the one-variable orthogonal polynomials. 

The first method follows from the proof of Theorem 1. The Cm+n-l - basis 
elements for orthogonal polynomials of degree m are of the form: 

m-1 

bj = 4)j(X) + E Aj1,j4)(X) where u(j) = k. 
a( i)=O 

The set of coefficients {A j, } are found by solving the Cm+n-l,n linear equations 

mr1 
0 = (bj, qj) = , AJ,k((k), 4)i) + (')i, ()i) where i = 1, ... , Cm+n?nl,n. 

a(k)=O 
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This would be the matrix approach to generating the basis set and the resulting 
basis set is the one mentioned in Theorem 1. 

The second method is to orthogonalize the monomials 1 2, 2*, k-li, ky, &0, 

where k = Cm.lnn and a(j) = m. Using the Gram-Schmidt method, the basic 
equations are: 

Qi = ( 
D1= (Qi, Qi)''2 
Pi = Q1/D1 

I-1 

Qi = +1,-E ( 1, Po)Pi 
Di = (Ql, Ql)1/2 for 1 = 2, 3, .., I k Cm-l+ni . 

Pi = Q1/D1 

Then the basis set for $m is 
r ~~~~~k| 

Bm = bj: bj = - 
E (j, Pi)P ,T(j) = m;. 

The third method is to find a partial differential equation with boundary con- 
dition such that the mth partial derivative of the solution is related to a basis ele- 
ment of the orthogonal polynomials of degree m. The method is similar to one sug- 
gested by Gr6bner [4]. 

Let Pj(X) be an mth-degree orthogonal polynomial over a region D with a 
positive weight function 11(X). Let Uj(X) be a function such that 

a,mu[X) 
- W(X)P(X), where ai = m. 

al .a. i=l 

Since Pj(X) is an mth degree polynomial, we have that 

Om+1 /( Uj(X) 

aa,+l ... 1a.X W(X) aaUl (x ) an 0 

To get the boundary conditions to the partial differential equation one must 
integrate by parts. Using a generalization of Green's theorem to n dimensions one 
has 

ff|-. fUj(X) &V() dX= kf|.. f U(X)V(X) cos (n, xi)dS 

11 |T (X) d '(X7) dX 
axi~ ~ ~ ~~~~x 

wlhere the plus or minus sign depends on the orientation of AD and on the coordinate 
Xi. 

Since Pj(X) is an orthogonal polynomial, if P,,-1 is any polynomial of degree at 
most m - 1 then 

0 ..J fa'lU.,X) Pm1 (X)dX 
D (9jX, .. xnX 
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Using the previous equation to integrate by parts the above equation one can 
reduce the order of differentiation on Uj(X) while increasing the order of differen- 
tiation on P7_1(X). There are many ways of accomplishing this but after m - 1 
steps one gets the mth partial of Pmi,(X) which is zero. Combining all these ways 
by summation we have 

O = ? E- E f j.I ain- (u1+?- +?)-luj(x) 
ul+- +un=; 0<:!u j<ai k=l all. ak-Xk. . . aanuflxv. 

ait??UnP j(X) 
8 ula+ npj(x) cos (n, x)dS. 

The polynomial Pm-l was an arbitrary polynomial of degree at most m - 1, 
therefore the only way the above equation can be valid is that either cos (n, Xk) = 0 

or the respective partials of Uj(X) are zero; this gives us the following boundary 
conditions to the partial differential equation: 

if vi < ai for all points on AD, i = 1, n 

amUj(X) - if vi = ai for all points on OD, 

vIx1. *.a vnX if Vj < aj where cos (n, xi) - 0 for each i = 1, n 
and every] = 1, ***, i-1, i + 1, *, n. 

Note that the differential equation with its boundary conditions produces a 
basis set which is different from the basis produced by the first two methods. 

3. Numerical Integration. In this section we will show the relationship of or- 
thogonal polynomials in several variables to the evaluation of multiple integrals. 

Given an integer m, a region D C En with positive outer measure and an in- 
tegrable weight function W(X) of constant sign on D whose integral, over any 
region D' C D with positive outer measure, is positive: the problem is to find 
points Xi, ., Xr and weights ui, ., ur so that the equation 

r r r 
l(f) = ] J W(X)f(X)dX = Ztif(Xi) 

D i=l 

holds whenever f(X) is a polynomial of degree at most m. 
Goals that one would like to achieve are that the points Xi, X2, * , X. are 

real, in the region D and that r is a minimum. Vladimir Tchakaloff [11] showed 
that if the weights ul, U2, *, Ur are to be positive, then in general Cm+n,,, points 
are needed. In this paper we will look at regions and integration formulas that 
require fewer than Cm+nn points and still meet most or all of the above goals. 

A polynomial of degree m in n-variables has Cm+n,n monomials. Replacing f(X) 

in the above equation by each of the monomials, one gets Cm+in,, nonlinear equa- 
tions in terms of the (n + 1)r unknowns Xi = (x i, X2 i. * * Xn i)Ui i = 1, ... , r. 
If the number of equations is to equal the number of unknowns one has 
r = Cm+n,n/(n + 1). There are however some integration formulas that use fewer 
than this number of points [5]. 

In this section it will be shown that if an integration formula of precision m has 
less than Cm+n,n points the points of this integration formula will be zeros of a 

polynomial which is orthogonal to a set of polynomials of lower degree. 
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THEOREM 2. If an integration formula of precision m has r < Cm+n,n points then 
these r points are zeros of a polynomial of degree k, 0 < k ? m. 

Proof. Let r be the number of points in the integration formula and let j, 
1 < j < C,n, be the rank of the matrix 410(Xi) ... * r(XI)j, i = 1, **. , r. For 
some subsets {k1, * * *, kj}, {fil, *., ij} of {1, * * *, r} we have the determinant 
1Ik1(Xi) * **kj(X)I, i = il, ..., ij = 0. Therefore the polynomial 

P(X) = 14k4(Xi) * **kj+?(Xi) I i = , il, *** ij, 

(tbe asterisk implies that in the first row the symbol Xi is replaced by the variable 
X) has all the points of the integration formula as zeros and is of degree at most 
m, and not identically zero. :: 

LEMMA. If P(X) is a polynomial that is not identically zero then the set of zeros 
of P(X) is of measure zero. 

Proof. Assume that a polynomial P(X) is zero on a set Z which has positive 
measure. Place all the variables except one equal to some constant c = 

(cl, c2, . . ., cn-1), then we can write P(X) = Qc(Xn). 
If 4n n Z is not empty for a line 1 parallel to one of the axes, in this case the 

xn axis, then almost always the set 1 n Z has positive measure [5]. Therefore for 
some constant c, Qc(Xn) = 0 has more than a finite number of roots. By the 
fundamental theorem of algebra this implies Qc(Xn) = 0. The coefficients of Qc(Xn) 
are polynomials in the remaining n - 1 variables and by induction we have that 
P(X) 0.:: 

THEOREM 3. An integration formula in En of precision m must have more than 
C [m/2]+n,n points. 

Proof. If an integration formula in En of precision m has not more than 
C[m/2]+n,n points, then the polynomial of Theorem 2 is of degree at most [m/2], and 
P2(X) has degree at most m. Since the integration formula is of precision m we 
have that ffD W(X)P2(X)dX = 0. We were given that fD W(X) > 0 and 
W(X) ? 0 on D; therefore for some D' C D, ,4(D') > 0 we have that W(X) > 0 
on D'. By the lemma P2(X) > 0 on D = D' - E where ,4(E) = 0. Therefore 
W(X)P2(X) > 0 on D3 and ffD W(X)P2(X)dX > ff5 W(X)P2(X)dX > 0 which 
is a contradiction. :: 

THEOREM 4. The polynomial P(X) of degree k which has the points of the integra- 
tion formula of precision m as roots is orthogonal to all polynomials of degree less 
than or equal to m - k. 

Proof. Let Q(X) be any polynomial of degree less than or equal to m - k. The 
integration formula of precision m is exact for polynomials of degree less than m; 
hence (P, Q) = ffD W(X)P(X)Q(X)dX = 0. Therefore P(X) is orthogonal to 
polynomials of degree at most m - k. 
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